Computation of solid angles and form factors

Exercise UB10, November 2012, UTC, Professor: Benoit Beckers

Compare two enclosures of same volume (500 m³) and height (5 m). Their bases are correspondingly a square and a circle. Perform the comparison by filling the following table.

Enclosure	Square base	Circular base
Envelope area	?	?
	?	?
Solid angle of the roof as	Indication: consider the	Indication: compute the area of the
seen from the center of the	solid angle of a face of a	spherical cap of the sphere centered in
floor	regular polyhedron as	the center of the base and limited by its
	seen from its center	contour on the roof
Differential form factor of	?	?
the roof as seen from the	Indication: use Lambert ¹	Indication: use Nusselt ² analogy
center of the floor	formula	

Useful theoretical background

1. Without obstruction, the differential form factor of a polygonal surface P, Q, R... is obtained by the Lambert's exact formula:

Figure 1 : Point (S) to area (PQR...) view factor³

 ¹ Johann Heinrich Lambert, "Photometria sive de mensura et gradibus luminis, colorum et umbrae", 1760, German translation by E. Anding in Ostwald's Klassiker der Exakten Wissenschaften, Vol. 31-33, Leipzig, 1892. Cited by Peter Schröder & Pat Hanrahan, « A Closed Form Expression for the Form Factor between Two Polygons », Research Report CS-TR-404-93, January 1993.
 ² W. Nusselt, "Graphische bestimmung des winkelverhaltnisses bei der wärmestrahlung", Zeitschrift des Vereines Deutscher Ingenieure,

² W. Nusselt, "Graphische bestimmung des winkelverhaltnisses bei der wärmestrahlung", Zeitschrift des Vereines Deutscher Ingenieure, 72(20):673 1928. See: B. Beckers, L. Masset & P. Beckers, "Commentaires sur l'analogie de Nusselt", Rapport Helio_004_fr, 2009, http://www.heliodon.net/.

$$F_{dS-j} = \frac{1}{2\pi} \sum_{j} n.g_j \tag{1.1}$$

Vector *n* is normal to the surface supporting dS and for which we calculate the form factor. Vectors g_j are normal to the faces *SPQ*, etc. of the pyramid. Their modules are equal to the apex angles of the faces.

2. Area of a spherical cap

According to the notations of the above figure, the area of a spherical cap is easily obtained, either in function of the angle α or in function of the radius *r* of the sphere and the distance *h* from the base of the cap to its pole.

$$Area_{cap} = 2\pi r^2 \left(1 - \cos\alpha\right) = 2\pi rh \tag{1.2}$$

Solution

Enclosure	Square base	Circular base
Envelope area	Walls and roof: 300 m^2 Floor: 100 m^2 Total : 400 m^2	$a = \sqrt{100/\pi} = 5.642 \text{ m}$ Wall: 177.2454 m ² Total: 377.2454 m ²
Solid angle of the roof as seen from the center of the floor	Solid angle = 1/3 = 0.3333 Expressed as a fraction of the hemisphere solid angle	$r = \sqrt{25 + 100/\pi} = 7.5386 \text{ m}$ h = r - 5 Solid angle = $h/r = 0.3367$ (fraction of the hemisphere solid angle)
Differential form factor of	0.5541	$100 / (\pi r^2) = a^2 / r^2 = 0.5601$
the roof as seen from the	Expressed as a fraction of the	Expressed as a fraction of the
center of the floor	hemisphere form factor	hemisphere form factor

³ P. Beckers & B. Beckers, *Radiative Simulation Methods*, in Solar Energy at Urban Scale, chapter 10, Ed. B. Beckers, John Wiley and Sons, Inc., 2012.

Some details of the solution

The differential form factor of the square roof *PQRT* as seen from the center *S* of the floor is easily by directly applying the Lambert's formula (1.1):

$$F = \frac{1}{2\pi} \begin{bmatrix} ar \cos\left(\frac{\overrightarrow{SP} \cdot \overrightarrow{SQ}}{\left|\overrightarrow{SP}\right| \left|\overrightarrow{SQ}\right|}\right) \frac{\overrightarrow{SP} \times \overrightarrow{SQ}}{\left|\overrightarrow{SP} \times \overrightarrow{SQ}\right|} \cdot \vec{n} + ar \cos\left(\frac{\overrightarrow{SQ} \cdot \overrightarrow{SR}}{\left|\overrightarrow{SQ}\right| \left|\overrightarrow{SR}\right|}\right) \frac{\overrightarrow{SQ} \times \overrightarrow{SR}}{\left|\overrightarrow{SQ} \times \overrightarrow{SR}\right|} \cdot \vec{n} + \\ ar \cos\left(\frac{\overrightarrow{SR} \cdot \overrightarrow{ST}}{\left|\overrightarrow{SR}\right| \left|\overrightarrow{ST}\right|}\right) \frac{\overrightarrow{SR} \times \overrightarrow{ST}}{\left|\overrightarrow{SR} \times \overrightarrow{ST}\right|} \cdot \vec{n} + ar \cos\left(\frac{\overrightarrow{ST} \cdot \overrightarrow{SP}}{\left|\overrightarrow{ST}\right| \left|\overrightarrow{SP}\right|}\right) \frac{\overrightarrow{ST} \times \overrightarrow{SP}}{\left|\overrightarrow{ST} \times \overrightarrow{SP}\right|} \cdot \vec{n} \end{bmatrix}$$
(1.3)

By symmetry it is sufficient to compute a single term (one face of the pyramid):

$$F = \frac{2}{\pi} \left[ar \cos \left(\frac{\overrightarrow{SP} \cdot \overrightarrow{SQ}}{\left| \overrightarrow{SP} \right| \left| \overrightarrow{SQ} \right|} \right) \frac{\overrightarrow{SP} \times \overrightarrow{SQ}}{\left| \overrightarrow{SP} \times \overrightarrow{SQ} \right|} \cdot \vec{n} \right]$$
(1.4)

Finally, simple calculations lead to the result:

$$\overrightarrow{SP} = \begin{bmatrix} 5 & -5 & 5 \end{bmatrix}; \quad |\overrightarrow{SP}| = \sqrt{75}$$

$$\overrightarrow{SQ} = \begin{bmatrix} 5 & 5 & 5 \end{bmatrix}; \quad |\overrightarrow{SQ}| = \sqrt{75}$$

$$\overrightarrow{SP} \cdot \overrightarrow{SQ} = 25; \quad \alpha = \arg \cos\left(\frac{1}{3}\right) = 1.2310 \ radians = 70.5288^{\circ}$$

$$(\overrightarrow{SP} \times \overrightarrow{SQ}) \cdot \overrightarrow{n} = 50; \quad |\overrightarrow{SP} \times \overrightarrow{SQ}| = \sqrt{5000}$$

$$F = \frac{2}{\pi} 1.2310 \frac{50}{\sqrt{5000}} = 0.5541$$
(1.5)